Articles That Are Related to Article:

Immunological Aspects of Local Radiotherapy: Clinical Relevance


Novel Biological Radiochemotherapy Approaches in Locally Advanced-stage Cervical Cancer Management

Abstract: Biological anticancer agents that enhance radiochemotherapeutic effect are appealing in the modern medical treatment of uterine cervix cancer. In this concise review, the focus is on three classes of biological anticancer agents. The first class is ribonucleotide reductase inhibitors. These biological anticancer agents impede deoxyribonucleotide payout and stop new synthesis of DNA molecule building blocks. By disrupting deoxyribonucleotide supply and demand economics, ribonucleotide reductase inhibitors disrupt the repair of radiation- and chemotherapy-induced DNA damage and enhance cancer cell death. Angiogenesis inhibitors represent a second class of biological anticancer agents. Angiogenesis inhibitors are conceptually thought to normalize cancer tumor vasculature and modulate vascular endothelial growth factor signals. Consequences of normalized tumor vessel permeability are better oxygen supply for radiosensitization and improved tumor fluid dynamics imparting chemosensitization. A third class, cytolytic T-cell immune modulators, edits human immune system responses to cancer cell antigens. These biological anticancer agents exploit molecular signaling involved in immune detection and in immune eradication. Completed and planned clinical trials utilizing these agents are discussed relative to the future radiochemotherapeutic management of uterine cervix cancer. ... Read more

Immune Effects of Targeted Radiation Therapy for Cancer

Abstract: Radiation therapy plays an important role in the treatment of the majority of cancers, and is commonly used to treat both localized and metastatic disease. Immunotherapy has recently been firmly integrated into the treatment of metastatic melanoma, and holds significant promise in treating a variety of other cancers. Although large field radiation has historically been appreciated for its immunosuppressive ability, targeted radiation can induce substantial changes in the tumor microenvironment beyond cellular cytotoxicity that evoke innate and adaptive immune responses. Previous studies have highlighted radiation-induced changes in proinflammatory cytokines, chemokines, effector, and immunosuppressive T cell subsets, as well as in immune receptors on tumor cells. Some of these changes in localized and systemic immune mediators have been linked to expansion of tumor-reactive T cells, improved clinical responses, and increased overall survival in preclinical and clinical models. Taken together, this evidence suggests that targeted radiation therapy can impact anti-tumor immune responses, and may potentially be combined with immunotherapy for synergistic effect. ... Read more

Gene Therapy and Virotherapy: Novel Therapeutic Approaches for Brain Tumors

Abstract: Glioblastoma multiforme (GBM) is a deadly primary brain tumor in adults, with a median survival of ~12-18 months post-diagnosis. Despite recent advances in conventional therapeutic approaches, only modest improvements in median survival have been achieved; GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are desperately needed. Our group and others are pursuing virotherapy and gene therapy strategies for the treatment of GBM. In this review, we will discuss various virotherapy and gene therapy approaches for GBM currently under pre-clinical and clinical evaluation including direct or conditional cytotoxic, and/or immunostimulatory approaches. We also discuss cutting-edge technologies for drug/gene delivery and targeting brain tumors, including the use of stem cells as delivery platforms, the use of targeted immunotoxins, and the therapeutic potential of using GBM microvesicles to deliver therapeutic siRNAs or virotherapies. Finally, various animal models available to test novel GBM therapies are discussed. ... Read more

New Approaches for the Immunotherapy of Acute Myeloid Leukemia

Abstract: Acute myeloid leukemia (AML) is a set of related diseases characterized by the immortalization and uncontrolled expansion of myeloid precursor cells. Core therapy for AML has remained unchanged for nearly 30 years, and survival rates remain unsatisfactory. However, advances in the immunotherapy of AML have created opportunities for improved outcomes. Enforcing a tumor-specific immune response through the re-direction of the adaptive immune system, which links remarkable specificity with potent cytotoxic effector functions, has proven particularly compelling. This may be coupled with immune checkpoint blockade and conventional therapies for optimal effect. Engineered antibodies are currently in use in AML and the repertoire of available therapeutics will expand. NK cells have shown effectiveness in this disease. New methods to optimize their activation and the targeting of AML show potential. Most significantly, adoptive immunotherapy with tumor-specific T cells, and particularly T cells re-directed using genetically introduced TCR or chimeric antigen receptors, have demonstrated promise. Each of these approaches has unique benefits and challenges that we explore in this review. ... Read more

Advances in Therapeutic Vaccines for Pancreatic Cancer

Abstract: Pancreatic cancer is one of the most difficult-to-treat cancers. Despite surgical resection, radiation and/or chemotherapy, greater than 94% of people with pancreatic cancer do not survive beyond 5 years. In fact, median survival after diagnosis of metastatic pancreatic cancer is 4.5 months. The majority of patients are diagnosed with nonresectable, metastatic disease, and chemotherapy only extends their median survival by less than 2 months with only 18% of those treated surviving beyond 1 year. Despite the severity of their disease, most patients exhibit tumor specific cellular immunity to their pancreatic cancer antigens. Obviously their immunity is ineffective in preventing tumor growth. Recent studies have demonstrated that the tumor microenvironment may hold the key to determining the nature of the tumors' ability to escape from immune attack. Preliminary clinical trials have suggested that blocking these escape mechanisms may result in survival benefit to the patients, and phase I and II clinical trials with tumor vaccines have led to some survival benefits. Perhaps combining therapies directed against immune escape mechanisms with tumor vaccines will result in even greater survival benefit for patients with pancreatic cancer. While therapeutic vaccines for pancreatic cancers have been reviewed previously (Plate, 2011), updates on recent preliminary reports of two clinical vaccine trials are worthy of our attention. ... Read more

Advances in Strategies and Methodologies in Cancer Immunotherapy

Abstract: Since the invention of Coley's toxin by William Coley in early 1900s, the path for cancer immunotherapy has been a convoluted one. Although still not considered standard of care, with the FDA approval of trastuzumab, Provenge and ipilimumab, the medical and scientific community has started to embrace the possibility that immunotherapy could be a new hope for cancer patients with otherwise untreatable metastatic diseases. This review aims to summarize the development of some major strategies in cancer immunotherapy, from the earliest peptide vaccine and transfer of tumor specific antibodies/T cells to the more recent dendritic cell (DC) vaccines, whole cell tumor vaccines, and checkpoint blockade therapy. Discussion of some major milestones and obstacles in the shaping of the field and the future perspectives is included. Photoimmunotherapy is also reviewed as an example of emerging new therapies combining phototherapy and immunotherapy. ... Read more

An Unexpected Journey: How Cancer Immunotherapy Has Paved the Way for an HIV-1 Cure

Abstract: Over 30 million people worldwide are currently infected with human immunodeficiency virus type-1 (HIV-1). While HIV-1 infection was initially thought to be a death sentence, the advent of combination antiretroviral therapy (cART) in the mid-1990's resulted in decreases in viremia and an extended lifespan for infected persons. Despite this, long-term control of the virus in the absence of drug therapy has yet to be achieved, owing to the rebound in viral load and resumption of disease progression that follows removal of the patient from cART. Currently, the most promising candidates for an HIV-1 cure are immunotherapies that harness the patient's own immune system and induce cytotoxic T lymphocyte (CTL)-mediated clearance of infected cells. Most of these approaches were developed and optimized in the cancer setting and have had varying degrees of success, the findings from which have wide applications to various disease models. In this review, we evaluate the past successes and failures of cancer immunotherapy and how the findings have shaped our journey toward an HIV-1 cure. ... Read more

GM-CSF-Secreting Vaccines for Solid Tumors: Moving Forward

Abstract: Cancer vaccines consisting of intact tumor cells genetically modified to secrete the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have undergone extensive preclinical development. These vaccines induce the massive accumulation of dendritic cells at the intradermal injection site, which engulf, process, and present tumor antigens to activate tumor-specific T cells. Early phase clinical testing demonstrated promising evidence of safety and bioactivity, although initial phase III clinical trials were unsuccessful. Together, the preclinical and clinical data argue for the continued clinical development of these vaccines, integrating them with standard and novel cancer therapeutics that enhance vaccine activity by overcoming immune tolerance and suppression, and/or augmenting co-stimulatory pathways of T cell activation. ... Read more

Tracking the Seed and Tending the Soil: Evolving Concepts in Metastatic Breast Cancer

Abstract: Metastasis, the process whereby cancer cells spread from their primary site of origin and grow in adjacent or distant sites, is the primary cause of death in cancer patients. The last 30 years has witnessed significant progress in decreasing cancer mortality rates -- largely as a result of improved screening and prevention, practical applications of cancer genomics, and less toxic, more targeted therapies. Despite these improvements, metastasis relentlessly drives mortality. The pervasive mortality from metastasis highlights the shortcomings of traditionally accepted hypotheses on the metastatic process. Historically, metastasis has been described as a unidirectional process, whereby cancer cells leave a primary tumor and seed metastasis in regional lymph nodes or distant sites. This anatomically based hypothesis has dictated much of our medical, and in particular, surgical approach to treating cancers. Alternatively, recent research indicates that metastasis is a multidirectional process whereby cancer cells can seed distant sites as well as the primary tumor itself. The multidirectional pathway of cancer cells, termed "self-seeding," has been corroborated in several experimental and clinical models. This review will evaluate the "self-seeding" hypothesis with attention both to the "seed" (cancer cells) as well as the "soil" (premetastatic niche). Increasingly, the role of the microenvironment surrounding metastases appears essential to the survival of metastatic colonies. The self-seeding model depends not only on the inherent mobility of cancer cells, but also on the supporting non-cancerous cells which enable circulating tumors cells to migrate to and survive in distant sites. The recognition that some of these non-cancerous cells include key components of the immune system has re-ignited the field of immunotherapy in cancer. One particular area of immunotherapy research, tumor entrained neutrophils, will be reviewed in more depth. Ultimately, understanding the dynamic interplay between cancer cells and the metastatic niche offers fertile ground for progress both in the treatment and prevention of metastasis. ... Read more

Doxorubicin Encapsulated in Micelles Enhances Radiosensitivity in Doxorubicin-resistant Tumor Cells

Abstract: To evaluate the efficacy of doxorubicin (DOX) loaded micelles in enhancing DOX radiosensitivity in DOX-resistant K562 tumor cells (K562/DOX cells), DOX loaded polyethylene glycol-polycaprolactone (PEG-PCL) copolymer micelles and pluronic 105 (P105) micelles, and composite micelles composed of PEG-PCL and P105 were prepared. By using MTT assay, soft agar cloning assays, confocal laser scanning microscopy, and flow cytometry analyses to evaluate the radiosensitivity of each compound, DOX loaded micelles were found to increase the radiosensitivity of K562/DOX cells, as revealed by a marked cellular uptake and its sustained, slower release than free DOX. The micelles encapsulating DOX significantly enhanced its cytotoxicity in K562/DOX cells. Combined treatment with the encapsulation of DOX in micelles and radiotherapy therefore warrants investigation in clinical trials as a potential anticancer strategy with increased efficacy and reduced side effects. ... Read more

Close
Close
E-mail It
Close