Articles That Are Related to Article:

T Cell Costimulation and Coinhibition: Genetics and Disease


Genetic Progress Towards the Molecular Basis of Common Autoimmunity

Abstract: Identification of the genetic determinants that underlie autoimmune diseases implicates new biochemical pathways in disease pathogenesis. The authors describe how recent advances in genetic knowledge of autoimmunity have pointed to aberrant negative regulation of autoreactive T-cells as a key step in autoimmunity. The tissue specificity of autoimmune attack is also under genetic control and variations in tissue-specific factors also appear to have a role. ... Read more

miRNAs at the Crossroad Between Hematopoietic Malignancies and Autoimmune Pathogenesis

Abstract: The study of microRNA (miRNA) regulation in the pathogenesis of autoimmune diseases and hematopoietic malignancies provides new understanding of the mechanisms of disease and is currently the focus of many researchers in the field. Autoimmune disorders and cancers of immune system comprise a wide range of genetically complex diseases that share certain aspects of dysregulated genetic networks, most notably deactivation of apoptosis. miRNA mechanisms control gene expression at the post-transcriptional level, linking mRNA processing and gene function. Considerable amount of data have been accumulated that indicate that the alteration of miRNA expression closely mirrors the development of immune system diseases and is likely to play a role in their pathogenesis. However, a knowledge gap remains in our understanding of how miRNA dysregulation and the specific effects of miRNAs on target gene expression underlay the disease phenotype. Here we review a number of studies describing miRNA alterations in autoimmune diseases and hematopoietic cancers and discuss potential miRNA-regulated mechanisms that differentially influence the development of autoimmunity as compared to cancer progression. ... Read more

Wnt Signaling in Dendritic Cells: Its Role in Regulation of Immunity and Tolerance

Abstract: A fundamental puzzle in immunology is how the immune system launches robust immunity against pathogens while maintaining a state of tolerance to the body's own tissues and the trillions of commensal microorganisms and food antigens that confront them every day. Innate immune cells, such as dendritic cells (DCs) and macrophages, play a fundamental role in this process. Emerging studies have highlighted that the Wnt signaling pathway, particularly in DCs, plays a major role in regulating tolerance versus immunity. Here, we review our current understanding of how Wnt-signaling shapes the immune response and, in addition, highlight unanswered questions, the solution of which will be imperative in the rational exploitation of this pathway in vaccine design and immune therapy. ... Read more

Advances in Mechanisms of Systemic Lupus Erythematosus

Abstract: Systemic lupus erythematosus (SLE) is a complex autoimmune disease associated with hormonal, environmental, and genetic factors and linked to the tolerance breakdown of B and T cells to self-antigens. SLE is characterized by the presence in patient serum of autoantibodies raised against nuclear components. Association of these antibodies to self-antigens, complement factors, DNA, and particular proteins will form circulating immune complexes (CIC) which can deposit in several organs, causing tissue damage and clinical manifestations. Historically, SLE is considered as an adaptive immune system disorder. Over the past decade, advances in the understanding of SLE pathogenesis placed the innate immune system as a key player in perpetuating and amplifying this systemic disease. In this review, we summarize some recent key advances in understanding the SLE immune-pathogenesis with a particular focus on newly discovered key factors from the innate immune system and how they influence the pathogenic adaptive immune system: neutrophils and neutrophil extracellular traps (NETs), plasmacytoid dendritic cells (pDCs) and type I interferons, basophils and autoreactive IgE, monocytes/macrophages and the inflammasome. Recent advances on B and T cell involvement in the SLE pathogenesis mechanisms are also discussed. Although the disease is clinically, genetically, and immunologically heterogeneous between affected individuals, the latest discoveries are offering new promising therapeutic strategies. ... Read more

Autoantigen Based Vaccines for Type 1 Diabetes

Abstract: Type 1 diabetes is an organ-specific autoimmune disease caused by chronic inflammation (insulitis), which damages the insulin producing β-cells of the pancreatic Islets of Langerhans. Dendritic cells (DCs) are generally the first cells of the immune system to process β-cell autoantigens and, by promoting autoreactivity, play a major role in the onset of insulitis. Although no cure for diabetes presently exists, the onset of insulitis can be diminished in the non-obese diabetic (NOD) mouse type 1 diabetes model by inoculation with endogenous β-cell autoantigens. These include the single peptide vaccines insulin, GAD65 (glutamic acid decarboxylase), and DiaPep277 (an immunogenic peptide from the 60-kDa heat shock protein). DiaPep277 is the only autoantigen so far to demonstrate positive results in human clinical trials. Diamyd (an alum adjuvant + recombinant GAD65 protein formulation) has shown great promise for suppressing β-cell autoreactivity in phase I and II clinical trials. While Diamyd preserved residual insulin secretion in early-onset type 1 diabetes patients, it did not reduce the amounts of insulin required to maintain euglycemia. Recently, multi-component vaccines composed of the anti-inflammatory cytokine (IL-10) and insulin or GAD55 linked to an immunostimulatory molecule, the cholera toxin B subunit, were shown to safely and completely inhibit diabetes onset in NOD mice. This result suggests that multi-component vaccine strategies are promising for prevention and reversal of diabetes autoimmunity in humans. Here we focus on the development of autoantigen vaccines for type 1 diabetes and demonstrate that multi-component vaccines are promising candidates for type 1 diabetes clinical studies. ... Read more

New Insight in the Mechanism of Action of Rituximab: The Interferon Signature Towards Personalized Medicine

Abstract: Rheumatoid arthritis (RA) is the most common chronic inflammatory disorder of the musculoskeletal system that may cause permanent joint damage. The disease has a major impact on the quality of life of affected individuals, costs for the health care system, and society. Currently, no curative treatment is available, and patients are subjected to a prolonged course of treatment. Due to their role in the pathogenesis of RA, B cells have become an attractive target for therapy. Rituximab (Mabthera®/Rituxan®) is a therapeutic monoclonal antibody against CD20 expressed on B cells, which is effective in depleting B cells and approved worldwide for the treatment of RA. Rituximab was shown to be highly beneficial in decreasing clinical symptoms, safe, and well tolerated. However, clinical experience revealed that approximately 30-40% of RA patients do not respond to it. Given the destructive nature of RA, the risk of adverse effects, and considerable costs for therapy, there is a strong need to make predictions on the clinical outcome before the start of therapy. Since nearly all treated patients experience an effective depletion of circulating B cells, questions have been raised concerning the mechanism of action. In this review, novel developments, in particular the findings on the role of the interferon system, will be highlighted. This may add new and important information to our understanding of the mechanism that underlies the clinical outcome of rituximab treatment and may lead to the identification of biomarkers to predict the response. ... Read more

Environmental Triggers and Epigenetic Deregulation in Autoimmune Disease

Abstract: The study of epigenetic mechanisms in the pathogenesis of autoimmune diseases is receiving unprecedented attention from clinicians and researchers in the field. Autoimmune disorders comprise a wide range of genetically complex diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Together they affect a significant proportion of the population and have a great economic impact on public health systems. Epigenetic mechanisms control gene expression and are influenced by external stimuli, linking environment and gene function. A variety of environmental agents, such as viral infection, hormones, certain drugs, and pollutants, have been found to influence the development of autoimmune diseases. On the other hand, there is considerable evidence of epigenetic changes, particularly DNA methylation alterations, in diseases like systemic lupus erythematosus, rheumatoid arthritis, or multiple sclerosis. However, the gap in our understanding between the specific effects of external agents and the influence on epigenetic profiles has not yet been filled. Here we review a number of studies describing epigenetic alterations in autoimmune diseases and a range of environmental factors that influence the development of autoimmune diseases. We also discuss potential mechanisms linking environment and epigenetics, consider the prospects for future epigenetic studies addressing the relationship between environment and epigenetics, and comment on the use of drugs with an epigenetic-reversing effect in the clinical management of these diseases. ... Read more

The Busy Life of Regulatory T Cells in Systemic Lupus Erythematosus

Abstract: CD4+CD25+Foxp3+ regulatory T (Treg) cells suppress the proliferation and release of cytokines in several subsets of immune cells. By doing so and by maintaining immune tolerance in peripheral tissues, Treg cells contribute to avert autoimmunity. Many studies have investigated how Treg cells operate in autoimmune diseases, and which cellular and molecular pathways are targeted by Treg cells. This review provides an update on the activities of Treg cells in systemic lupus erythematosus (SLE), an autoimmune disease characterized by the presence of hyperactive immune cells and aberrant antibody responses to multiple nuclear and cytoplasmic antigens. ... Read more

Crypticity of Self Antigenic Determinants Is the Cornerstone of a Theory of Autoimmunity

Abstract: Self antigens can have dominant and cryptic (hidden) antigenic determinants. T cells that can see the dominant antigenic determinants are tolerized and "disarmed." T cells that may still see the cryptic determinants are active and become a part of the T cell repertoire. Under certain circumstances when these T cells are more capable of "seeing" the cryptic antigenic determinants or the cryptic determinants unveil themselves, autoimmunity ensues. ... Read more

T Cell Chemokine Receptor Patterns as Pathogenic Signatures in Autoimmunity

Abstract: Autoimmune diseases arise from aberrant activation of immune cells directed against endogenous autoantigens expressed throughout the human body. While the initiating triggers remain poorly understood, the self-perpetuating phase of these diseases is directly linked to the ongoing recruitment of inflammatory cells that traffic to the affected anatomical sites. T lymphocytes are prominent drivers of many autoimmune diseases and the targeted trafficking of these cells to infiltrate the affected organs is often a common denominator. The regulation of T cell trafficking involves the coordinated expression of specific patterns of chemokines and the reciprocal expression of cognate chemokine receptors on T cell membranes. Thereby, chemokines direct the specific trafficking of a wide array of responsive activated immune cells. Specific patterns of chemokine receptor expression can correlate with disease activity in an autoimmune disease, confirming the importance of further characterizing the T cells that infiltrate specific sites of autoimmunity. Herein, we will review our current understanding of the roles of chemokines in two common autoimmune diseases: rheumatoid arthritis and multiple sclerosis. We also discuss the implications for chemokine receptor signatures in autoimmune pathogenesis, and how these may provide novel targets for therapeutic intervention. ... Read more

Close
Close
E-mail It
Close