Articles That Are Related to Article:

Some Unmet Challenges in the Immunology of Viral Infections

The Contribution of Non-human Primate Models to the Development of Human Vaccines

Abstract: The non-human primates (NHPs) model in biomedical research has contributed to the study of human infectious, autoimmune, oncogenic, and neurological diseases. This review focuses on the importance of NHP models in vaccine development for tuberculosis, pertussis, Dengue, group A streptococcus (Streptococcus pyogenes) infection, HIV infection, and certain diseases in the elderly (influenza, for example). From understanding disease pathogenesis and mechanisms of protection, to assessing vaccine safety and efficacy, we discuss selected cases where the importance of the use of NHP models is highlighted. ... Read more

All Eyes on the Next Generation of HIV Vaccines: Strategies for Inducing a Broadly Neutralizing Antibody Response

Abstract: HIV-1 broadly neutralizing antibodies (BNAbs) develop after several years of infection through a recursive process of memory B cell adaptation and maturation against co-evolving virus quasispecies. Advances in single-cell sorting and memory B cell antibody cloning methods have identified many new HIV BNAbs targeting conserved epitopes on the HIV envelope (env) protein. 3D crystal structures and biophysical analyses of BNAbs bound to invariant virus structures expressed on monomeric gp120, epitope scaffolds, core structures, and native trimers have helped us to visualize unique binding interactions and paratope orientations that have been instrumental in guiding vaccine design. A paradigm shift in the approach to structure-based design of HIV-1 envelope immunogens came recently after several laboratories discovered that native viral envelopes or "env-structures" reverse-engineered to bind with high affinity to a handful of broadly neutralizing antibodies did not in fact bind the predicted germline precursors of these broadly neutralizing antibodies. A major challenge for HIV-1 B cell vaccine development moving forward is the design of new envelope immunogens that can trigger the selection and expansion of germline precursor and intermediate memory B cells to recapitulate B cell ontogenies associated with the maturation of a broadly neutralizing antibody response. Equally important for vaccine development is the identification of delivery systems, prime-boost strategies, and synergistic adjuvant combinations that can induce the magnitude and quality of antigen-specific T follicular helper (TFH) cell responses needed to drive somatic hypermutation (SHM) and B cell maturation against heterologous primary virus envelopes. Finding the combination of multi-protein envelope immunogens and immunization strategies that can evolve a potent broadly neutralizing antibody response portends to require a complex vaccine regimen that might be difficult to implement on any scale. This perspective strives to integrate recent insights into mechanisms associated with the evolution of an HIV-1 broadly neutralizing antibody response with current immunogen design and proffers a novel immunization strategy for skewing TH17/TFH cell responses that can drive B cell adaptation and affinity maturation associated with a broadly neutralizing antibody response. ... Read more

Immune Mechanisms in Atherosclerosis and Potential for an Atherosclerosis Vaccine

Abstract: A large body of evidence implicates the immune system in the pathogenesis and modulation of atherosclerosis. Dendritic cells and lymphocytes are among the many components of the immune system that are involved in modulating atherogenesis. This review focuses on the current knowledge of the complex role of the dendritic cells and lymphocytes in atherogenesis and the potential for immune-modulation therapies for atherosclerosis. ... Read more

The Development of Anti-inflammatory Drugs for Infectious Diseases

Abstract: Traditionally, disease is thought to result from an insufficient response of the host to infection, leading to increased replication of microorganisms and consequently disease. However, infection may not necessarily lead to disease and disease is not only the result of uncontrolled replication of a microorganism. Indeed, the inflammatory response triggered by certain infections is frequently the cause of tissue damage and death. The present review argues that it is possible to separate mechanisms necessary for the host response to deal with infection from those which cause unwanted inflammation and drive disease. By understanding mechanisms which drive disease and where/how interaction leads to disease, we may be able to devise novel therapies to alleviate suffering of patients. Below, we will describe three situations -- influenza, dengue and sepsis -- in which unwanted (excessive, misplaced or altered) inflammation is responsible for disease induction. In these three situations, we will also describe some examples of molecules which have been found to drive disease but appear not to be essential for the ability of the host to control infection. ... Read more

Why Is Coinfection with Influenza Virus and Bacteria So Difficult to Control?

Abstract: Influenza viruses are genetically labile pathogens which avoid immune detection by constantly changing their coat proteins. Most human infections are caused by mildly pathogenic viruses which rarely cause life-threatening disease in healthy people, but some individuals with a weakened immune system can experience severe complications. Widespread infections with highly pathogenic strains of influenza virus are less common, but have the potential to cause enormous death tolls among healthy adults if infection rates reach pandemic proportions. Increased virulence has been attributed to a variety of factors, including enhanced susceptibility to coinfection with common strains of bacteria. The mechanisms that facilitate dual infection are a major focus of current research, as preventative measures are needed to avert future pandemics. ... Read more

An Unexpected Journey: How Cancer Immunotherapy Has Paved the Way for an HIV-1 Cure

Abstract: Over 30 million people worldwide are currently infected with human immunodeficiency virus type-1 (HIV-1). While HIV-1 infection was initially thought to be a death sentence, the advent of combination antiretroviral therapy (cART) in the mid-1990's resulted in decreases in viremia and an extended lifespan for infected persons. Despite this, long-term control of the virus in the absence of drug therapy has yet to be achieved, owing to the rebound in viral load and resumption of disease progression that follows removal of the patient from cART. Currently, the most promising candidates for an HIV-1 cure are immunotherapies that harness the patient's own immune system and induce cytotoxic T lymphocyte (CTL)-mediated clearance of infected cells. Most of these approaches were developed and optimized in the cancer setting and have had varying degrees of success, the findings from which have wide applications to various disease models. In this review, we evaluate the past successes and failures of cancer immunotherapy and how the findings have shaped our journey toward an HIV-1 cure. ... Read more

Interplay Between microRNAs, Toll-like Receptors, and HIV-1: Potential Implications in HIV-1 Replication and Chronic Immune Activation

Abstract: MicroRNAs (miRNAs) are important cellular, small non-coding RNAs that regulate host gene expression and have well-characterized roles in inflammation and infectious diseases. It has become apparent as well that cellular miRNAs can play crucial roles in controlling HIV-1 infection and replication. Whether HIV-1 encodes and is able to express viral miRNAs in infected cells remains controversial. HIV-1 can manipulate the biogenesis of miRNAs as well as the expression profiles of cellular miRNAs. Toll-Like receptors (TLRs) are important pathogen recognition receptors that sense invading pathogens orchestrating innate and adaptive immune responses. Innate immune recognition of HIV-1 infection leads to activation of TLR7/8. Recent evidence has shown that certain miRNAs can also be recognized by TLR7/8 leading to immune activation. However, the potential TLR7/8-mediated recognition of HIV-1 encoded miRNAs and/or cellular miRNAs modulated in HIV-1 infected cells has not been experimentally explored. In this review, we summarize the current literature on HIV-1 infection and miRNAs. Furthermore, we underscore the need for future research on potential miRNA-induced activation of TLR7/8, which might contribute to the chronic immune activation observed in HIV-1 infected patients. ... Read more

Vaccine Adjuvant Properties of Probiotic Bacteria

Abstract: Vaccine-preventable diseases are still responsible for the deaths of more than 1 million children under the age of 5 years annually, mostly in developing countries. A substantial number of these deaths are due to pneumococcal bacteria and infections with rotavirus. Important issues faced by the WHO, governments, vaccine manufacturers, and international organizations such as UNICEF and the Global Alliance for Vaccines and Immunization (GAVI) are the cost-effective introduction of these life-saving vaccines in resource-poor countries where there is a considerable disease burden, and achieving high rates of completion of vaccination schedules remains elusive. Problems with vaccine coverage and vaccine delivery in these regions are significant, as in some cases large proportions of the target population do not receive adequate vaccination. Consequently, there is a need to develop more effective vaccination strategies that can provide adequate protection with reduced schedules. To date, emphasis has been placed on identifying novel vaccine antigens and adjuvants that induce stronger protective immune responses, as well as developing mucosally-administered vaccines. These approaches would have enormous benefits in allowing safe administration of vaccines in remote areas and may overcome the necessity for multiple doses. In this regard, the use of probiotic bacteria as novel mucosal adjuvants to enhance existing vaccine specific-immune responses offers an exciting new approach. In this review, we discuss the evidence for the role of probiotics in enhancing vaccine responses and provide justification for further investigation into their clinical effects and mechanisms of action. ... Read more

MicroRNAs Regulate Immune System Via Multiple Targets

Abstract: MicroRNAs (miRNAs) represent the most abundant class of regulators of gene expression. Each miRNA may suppress multiple mRNA targets, while one mRNA can be targeted by many miRNAs for precise control of a wide range of cellular processes. The important role of miRNAs in the immune system is highlighted by the conditional Dicer knockout mouse, which exhibited profound aberrant development and function of immune cells. One particular miRNA, miR-155, is highly expressed and plays important role in lymphocytes. In this review we focused on the role of miRNA, especially miR-155, via their predicted and known mRNA targets in innate and adaptive immunity. Finally, we discussed the potential of miRNAs as novel targets for the diagnosis and therapy of immune system diseases. ... Read more

Elusive Alzheimer's Disease: Can Immune Signatures Help Our Understanding of This Challenging Disease? Part 2: New Immune Paradigm

Abstract: Alzheimer's disease (AD) is the most common form of dementia. Its most important pathological hallmarks are profound neuronal loss, presence of intracellular neurofibrillary tangles, and extracellular deposition of beta-amyloid protein (Aβ) as beta-amyloid plaques. One of the most important risk factors for AD is age and with the increase of life-expectancy AD has become the most common form of dementia. The current "Holy Grail" is to be able to diagnose variants of AD before they manifest clinically and before irreparable brain damage is done. To be able to do so, we need robust and reliable biomarkers which reflect the pathogenesis of AD. This is essential because such biomarkers might indicate pathways that could be targeted for interventions aiming at disease prevention or amelioration. Although much attention has been focused on Aβ in this respect, it may not be as attractive a target as thought if current doubts concerning its causative role are substantiated. This review will be in two parts, the first part dealt with the current clinical knowledge and the questions raised by the Aβ cascade hypothesis in the pathogenesis of AD and this second part aims to synthesize our current knowledge and new data suggesting how immunity may contribute to the development of AD and may itself be targeted in future treatments. ... Read more

E-mail It